Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 117974, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38467317

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication is one of the leading causes of coma. A well-regarded Chinese herbal formula, known as An-Gong-Niu-Huang-Wan (AGNHW), has garnered recognition for its efficacy in treating various brain disorders associated with impaired consciousness, including acute alcohol-induced coma. Despite its clinical effectiveness, the scientific community lacks comprehensive research on the mechanistic aspects of AGNHW's impact on the electroencephalogram (EEG) patterns observed during alcohol-induced coma. Gaining a deeper understanding of AGNHW's mechanism of action in relation to EEG characteristics would hold immense importance, serving as a solid foundation for further advancing its clinical therapeutic application. AIM OF THE STUDY: The study sought to investigate the impact of AGNHW on EEG activity and sleep EEG patterns in rats with alcoholic-induced coma. MATERIALS AND METHODS: A rat model of alcohol-induced coma was used to examine the effects of AGNHW on EEG patterns. Male Sprague-Dawley rats were intraperitoneally injected with 32% ethanol to induce a coma, followed by treatment with AGNHW. Wireless electrodes were implanted in the cortex of the rats to obtain EEG signals. Our analysis focused on evaluating alterations in the Rat Coma Scale (RCS), as well as assessing changes in the frequency and distribution of EEG patterns, sleep rhythms, and body temperature subsequent to AGNHW treatment. RESULTS: The study found a significant increase in the δ-band power ratio, as well as a decrease in RCS scores and ß-band power ratio after modeling. AGNHW treatment significantly reduced the δ-band power ratio and increased the ß-band power ratio compared to naloxone, suggesting its superior arousal effects. The results also revealed a decrease in the time proportion of WAKE and REM EEG patterns after modeling, accompanied by a significant increase in the time proportion of NREM EEG patterns. Both naloxone and AGNHW effectively counteracted the disordered sleep EEG patterns. Additionally, AGNHW was more effective than naloxone in improving hypothermia caused by acute alcohol poisoning in rats. CONCLUSION: Our study provides evidence for the arousal effects of AGNHW in alcohol-induced coma rats. It also suggests a potential role for AGNHW in regulating post-comatose sleep rhythm disorders.


Asunto(s)
Intoxicación Alcohólica , Coma , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Coma/inducido químicamente , Coma/tratamiento farmacológico , Electroencefalografía , Nivel de Alerta/fisiología , Sueño , Naloxona/farmacología
2.
J Ethnopharmacol ; 202: 138-146, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28065779

RESUMEN

Cerebral ischemia damages central neurons, and abnormal microenvironment in ischemic condition is the key factor to the damages. The increase of local concentration of glutamic acid, the overload of Ca2+, and the mitochondrial stress caused by release of cytochrome C are important factors of abnormal microenvironment in cerebral ischemia. In this study ginsenoside Rb1, a compound from Panax Notoginseng, was used to intervene abnormal environment of neurons in the hippocampal CA1 region in two animal models (microperfusion model and photothrombosis model). RESULTS: Compared with the vehicle in the sham group, ginsenoside had following effects. a) ginsenoside Rb1 increased the regional cerebral blood flow (rCBF) and the stability of neuronal ultrastructure in in the hippocampal CA1 region and improved the adaptability of neurons in two models. b) ginsenoside Rb1 improved the expression level of glial glutamate transporter1 (GLT-1) and reversed the uptake of glutamate (Glu) after ischemia, and as a result thereby decreased the excitability of Glu and the expression level of GLT-1 was proportional to the dose of ginsenoside Rb1 and similar to that of Nimodipine. c) ginsenoside Rb1 inhibited the expression level of NMDAR and the overload of Ca2+, thereby reducing neuronal damages. Meanwhile, the expression level of NMDAR was inversely proportional to the dose of ginsenoside Rb1, which was similar to that of Nimodipine. d) ginsenoside Rb1 decreased the release of cytochrome C (Cyt-C) and reduced the damages caused by neuronal mitochondrial stress. Meanwhile, the release of Cyt-C was inversely proportional to the dose of ginsenoside Rb1, which was similar to that of Nimodipine. Ginsenoside Rb1 may be as an effective drug for neuroprotection and improve cerebral blood flow after acute ischemia and prevent the secondary brain damage induced by stroke.


Asunto(s)
Microambiente Celular/efectos de los fármacos , Ginsenósidos/farmacología , Hipocampo/efectos de los fármacos , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Citocromos c/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Nimodipina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
3.
PLoS One ; 10(4): e0126684, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25928147

RESUMEN

Sensory gating is a process in which the brain's response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject's behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP) can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM) sleep and Non-REM (NREM) sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Evocados Auditivos , Filtrado Sensorial , Sueño , Vigilia , Estimulación Acústica , Animales , Condicionamiento Psicológico , Electroencefalografía , Masculino , Ratas Sprague-Dawley , Sueño REM
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA